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Abstract. It has been shown that vegetation growth in semi-arid regions is an important sink for human induced fossil 20 

fuel emissions of CO2, which indicates the strong need for improved understanding, and spatially explicit estimates of 21 

CO2 uptake (gross primary productivity (GPP)) in semi-arid ecosystems. This study has three aims: 1) to evaluate the 22 

MOD17A2H GPP (collection 6) product against eddy covariance (EC) based GPP for six sites across the Sahel. 2) To 23 

find evidence on the relationships between spatial and temporal variability in EC based photosynthetic capacity (Fopt) 24 

and quantum efficiency (α) and earth observation (EO) based vegetation indices 3) To study the applicability of EO up-25 

scaled Fopt and α for GPP modelling purposes. MOD17A2H GPP (collection 6) underestimated GPP strongly, most 26 

likely because the maximum light use efficiency is set too low for semi-arid ecosystems in the MODIS algorithm. The 27 

intra-annual dynamics in Fopt was closely related to the shortwave infrared water stress index (SIWSI) closely coupled 28 

to equivalent water thickness, whereas α was closely related to the renormalized difference vegetation index (RDVI) 29 

affected by chlorophyll abundance. Spatial and inter-annual dynamics in Fopt and α were closely coupled to the 30 

normalized difference vegetation index (NDVI) and RDVI, respectively. Modelled GPP based on Fopt and α up-scaled 31 

using EO based indices reproduced in situ GPP well for all but a cropped site. The cropped site was strongly impacted 32 

by intensive anthropogenic land use. This study indicates the strong applicability of EO as a tool for parameterising 33 

spatially explicit estimates of photosynthetic capacity and efficiency; incorporating this into dynamic global vegetation 34 

models could improve global estimations of vegetation productivity, ecosystem processes and biochemical and 35 

hydrological cycles. 36 

 37 
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1 Introduction 40 

Vegetation growth in semi-arid regions is an important sink for human induced fossil fuel emissions. Semi-arid regions 41 

are even the main biome driving long-term trends and inter-annual variability in carbon dioxide (CO2) uptake by 42 

terrestrial ecosystems (Ahlström et al., 2015; Poulter et al., 2014). It is thus important to understand the long-term 43 

variability of vegetation growth in semi-arid areas and their response to environmental conditions to better quantify and 44 

forecast the effects of climate change. 45 

   The Sahel is a semi-arid transition zone between the dry Sahara desert in the North and the humid Sudanian savanna 46 

in the south. The region has experienced numerous severe droughts during the last decades that resulted in region-wide 47 

famines in 1972-1973 and 1984–1985 and localized food shortages across the region in 1990, 2002, 2004, 2011 and 48 

2012 (Abdi et al., 2014; United Nations, 2013). Vegetation productivity is thereby an important ecosystem service for 49 

the people living in the Sahel, but it is under high pressure. The region experiences a strong population growth, 50 

increasing the demand on the ecosystem services due to cropland expansion, increased pasture stocking rates and 51 

fuelwood extraction (Abdi et al., 2014). Continuous cropping is practised to meet the demand of the growing population 52 

and has resulted in reduced soil fertility, which affects vegetation productivity negatively (Samaké et al., 2005; Chianu 53 

et al., 2006).  54 

   At the same time as we have reports of declining vegetation productivity, we have contradicting reports of greening of 55 

the Sahel based on remote sensing data (Dardel et al., 2014; Fensholt et al., 2013). The greening of the Sahel has mainly 56 

been attributed to alleviated drought stress conditions due to increased precipitation since the mid-1990s (Hickler et al., 57 

2005). Climate is thus another important factor regulating vegetation productivity and semi-arid regions, such as the 58 

Sahel, are particularly vulnerable to climate fluctuations due to their vulnerability to moisture conditions. 59 

   Estimation of gross primary productivity (GPP), i.e. uptake of atmospheric CO2 by vegetation, is still a major 60 

challenge within remote sensing of ecosystem services. GPP is a main driver of ecosystem services such as climate 61 

regulation, carbon (C) sequestration, C storage, food production, or livestock grassland production. Within earth 62 

observation (EO), spatial quantification of GPP generally involves light use efficiency (LUE), defined as the efficiency 63 

to convert absorbed solar light into CO2 uptake (Monteith, 1972, 1977). It has been shown that LUE varies in space and 64 

time due to factors such as plant functional type, drought and temperature, nutrient levels and physiological limitations 65 

of photosynthesis (Garbulsky et al., 2010; Paruelo et al., 2004; Kergoat et al., 2008). The LUE concept has been applied 66 

using various methods, either by using a biome-specific LUE constant (Ruimy et al., 1994), or by modifying a 67 

maximum LUE using meteorological variables (Running et al., 2004).  68 

   An example of an LUE based model is the standard GPP product from the Moderate Resolution Imaging 69 

Spectroradiometer (MODIS) sensor (MOD17A2). Within the model, absorbed photosynthetically active radiation 70 

(PAR) is estimated as a product of the fraction of PAR absorbed by the green vegetation (FPAR from MOD15A2) 71 

multiplied with daily PAR from the meteorological data of the Global Modeling and Assimilation Office (GMAO). A 72 

set of maximum LUE parameters specified for each biome are extracted from a Biome Properties Look-Up Table 73 

(BPLUT). Then maximum LUE is modified depending on air temperature (Tair) and vapor pressure deficit (VPD) levels 74 
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(Running et al., 2004). Sjöström et al. (2013) evaluated the MOD17A2 product (collection 5.1) for Africa, and showed 75 

that it was underestimating GPP for semi-arid savannas in the Sahel. Explanations for this underestimation were that the 76 

assigned maximum LUE from the BPLUT is set too low and uncertainties in the FPAR (MOD15A2) product. Recently, 77 

a new collection of MOD17A2 at 500 m spatial resolution was released (MOD17A2H; collection 6) with an updated 78 

BPLUT, updated GMAO meteorological data,  improved quality control and gap filling of the FPAR data from 79 

MOD15A2 (Running and Zhao, 2015).  80 

   It has been shown that the LUE method does not perform well in arid conditions and at agricultural sites (Turner et 81 

al., 2005). Additionally, the linearity assumed by the LUE model is usually not found  as the response of GPP to 82 

incoming light follows more of an asymptotic curve (Cannell and Thornley, 1998). Investigating other methods for 83 

remotely determining GPP is thus of great importance, especially for semi-arid environments. Therefore, instead of 84 

LUE we focus on the light response function of GPP at the canopy scale, and spatial and temporal variation of its two 85 

main parameters: maximum GPP under light saturation (canopy-scale photosynthetic capacity; Fopt), and the initial 86 

slope of the light response function (canopy-scale quantum efficiency; α) (Falge et al., 2001; Tagesson et al., 2015a). 87 

Photosynthetic capacity is a measure of the maximum rate at which the canopy can fix CO2 during photosynthesis 88 

(µmol CO2 m
-2 s-1) whereas α is the amount of CO2 fixed per incoming PAR (µmol CO2 µmol PAR-1). Just to clarify the 89 

difference in LUE and α in this study; LUE (µmol CO2 µmol APAR-1) is the slope of a linear fit between CO2 uptake 90 

and absorbed PAR, whereas α (µmol CO2 µmol PAR-1) is the initial slope of an asymptotic curve against incoming 91 

PAR. 92 

   It has been proven that Fopt and α are closely related to chlorophyll abundance due to their coupling with the electron 93 

transport rate (Ide et al., 2010). Additionally, in semi-arid ecosystems water availability is generally considered to be 94 

the main limiting factor affecting intra-annual dynamics of vegetation growth (Fensholt et al., 2013; Hickler et al., 95 

2005; Tagesson et al., 2015b). Several remote sensing studies have established relationships between remotely sensed 96 

vegetation indices and ecosystem properties such as chlorophyll abundance and equivalent water thickness (Yoder and 97 

Pettigrew-Crosby, 1995; Fensholt and Sandholt, 2003). In this study we will analyse if EO vegetation indices can be 98 

used for up-scaling Fopt and α and investigate if this could offer a promising way to map GPP in semi-arid areas. This 99 

potential will be analysed by the use of detailed ground observations from six different measurement sites (eddy 100 

covariance flux towers) across the Sahel.  101 

The three aims of this study are: 102 

1) To evaluate the recently released MOD17A2H GPP (collection 6) product and to investigate if it is better at 103 

capturing GPP levels for the Sahel than collection 5.1. We hypothesise that MOD17A2H GPP (collection 6) 104 

product will estimate GPP well for the six Sahelian measurement sites, because of  the major changes done in 105 

comparison to collection 5.1  (Running and Zhao, 2015).  106 

2) To find evidence on the relationships between spatial and temporal variability in Fopt and α and remotely 107 

sensed vegetation indices. We hypothesise that remotely sensed vegetation indices that are closely related to 108 

chlorophyll abundance can be used for quantifying spatial and inter-annual dynamics in Fopt and α. Vegetation 109 

indices closely related to equivalent water thickness are closely linked to intra-annual dynamics in Fopt and α 110 

across the Sahel. 111 

3) To evaluate the applicability of a GPP model based on the light response function using remotely sensed 112 

vegetation indices and incoming PAR as input data. 113 

Biogeosciences Discuss., doi:10.5194/bg-2016-414, 2016
Manuscript under review for journal Biogeosciences
Published: 29 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 
 

2 Materials and Methods 114 

2.1 Site description  115 

The Sahel stretches from the Atlantic Ocean in the west to the Red Sea in the east. The northern border towards the 116 

Sahara and the southern border towards the humid Sudanian Savanna are defined by the 150 and 700 mm isohytes, 117 

respectively (Fig. 1) (Prince et al., 1995). Tree and shrub canopy cover is now generally low (< 5%) and dominated by 118 

species of Balanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses such as Schoenefeldia 119 

gracilis, Dactyloctenium aegypticum, Aristida mutabilis, and Cenchrus biflorus dominate the herbaceous layer, but 120 

perennial grasses such as Andropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de 121 

Ridder et al., 1982). From the FLUXNET database (Baldocchi et al., 2001), we selected the six available measurement 122 

sites with eddy covariance based CO2 flux data from the Sahel (Table 1; Fig. 1). The sites represent a variety of the 123 

ecosystems present in the region, from dry fallow bush savanna to seasonally inundated acacia forest. For a full 124 

description of the measurement sites, we refer to (Tagesson et al., 2016) and the references in Table 1.  125 

<Table 1> 126 

<Figure 1> 127 

 128 

2.2 Data collection 129 

2.2.1 Eddy covariance, hydrological and meteorological in situ data 130 

Eddy covariance (EC), hydrological and meteorological data originating from the years between 2005 and 2013 were 131 

collected from the principal investigators of the measurement sites (Tagesson et al., 2016). The EC sensor set-up 132 

consisted of open-path CO2/H2O infrared gas analysers and 3-axis sonic anemometers. Data were collected at 20 Hz rate 133 

and statistics were calculated for 30-min periods. For a full description of sensor set up and post processing of the EC 134 

data, see references in Table 1. Final fluxes were filtered according quality flags provided by FLUXNET and outliers 135 

were filtered according Papale et al. (2006). We extracted the original net ecosystem exchange (NEE) data without any 136 

gap-filling or partitioning of NEE to GPP and ecosystem respiration. We also collected hydrological and meteorological 137 

data: air temperature (Tair; °C), rainfall (P; mm), relative air humidity (Rh; %), soil moisture at 0.1 m depth (SWC; % 138 

volumetric water content), incoming global radiation (Rg; W m-2), incoming photosynthetically active radiation (PAR; 139 

µmol m-2 s-1), VPD (hPa), peak dry weight biomass (g dry weight m-2), C3/C4 species ratio, and soil conditions 140 

(nitrogen and C concentration; %). For a full description of the collected data and sensor set-up, see Tagesson et al. 141 

(2016).  142 

 143 

2.2.2 Earth Observation data and gridded ancillary data 144 

Remotely sensed composite products from the MODIS/Terra L4 from the Sahel were collected at Reverb ECHO 145 

(NASA, 2016).  The collected products were GPP (MOD17A2H; collection 6) and the Nadir Bidirectional Reflectance 146 

Distribution Function (BRDF) adjusted reflectance (NBAR) (8-day composites; MCD43A4; collection 5.1) at 500*500 147 

m2 spatial resolution, and the normalized difference vegetation index (NDVI), and the enhanced vegetation index (EVI) 148 

(16-day composites; MOD13Q1; collection 6) at 250*250 m2 spatial resolution. The NBAR product was preferred over 149 

the reflectance product (MOD09A1), in order to avoid variability caused by varying sun and sensor viewing geometry 150 

(Huber et al., 2014; Tagesson et al., 2015c). We extracted the median of the 3x3 pixels centred at the location of the EC 151 

towers. The time series of the remotely sensed products were filtered according the MODIS quality control data; 152 
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MOD17A2H is a gap-filled and filtered product, QC data from MCD43A2 were used for the filtering of MCD43A4; 153 

and bit 2-5 (highest –decreasing quality) was used for MOD13Q1. Finally, data were gap-filled to daily values using 154 

linear interpolation. 155 

   For a GPP model to be applicable on a larger spatial scale, a gridded data set of incoming PAR is needed. We 156 

downloaded ERA Interim reanalysis PAR at the ground surface (W m-2) with a spatial resolution of 0.25°×0.25° 157 

accumulated for each 3-hour period 2000-2015 from the European Centre for Medium-Range Weather Forecasts 158 

(ECMWF) (Dee et al., 2011; ECMWF, 2016).  159 

 160 

2.3 Data handling 161 

2.3.1 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 162 

Both linear and hyperbolic equations have been used for investigating the response of GPP to incoming light (Wall and 163 

Kanemasu, 1990; Campbell et al., 2001). However, they do not represent the lower part of the light response function 164 

particularly well, and we thereby instead choose to use the asymptotic Mitscherlich light-response function (Inoue et al., 165 

2008; Falge et al., 2001). The Mitscherlich light-response function was fitted between daytime NEE and incoming 166 

PAR: 167 

d
F

PARα

opt R)e(1)(FNEE opt +−×−=












 ×−

         (1)
 

168 

where Fopt is the CO2 uptake at light saturation (photosynthetic capacity; µmol CO2 m
-2 s-1), Rd is dark respiration 169 

(µmol CO2 m
-2 s-1), and α is the initial slope of the light response curve (quantum efficiency; µmol CO2 µmol PAR-1) 170 

(Falge et al., 2001). By subtracting Rd from Eq. 1, the function is forced through zero and GPP is thereby estimated. We 171 

fitted Eq. 1 using 7-day moving windows with 1 day time steps and generating daily values of Fopt and α. To assure high 172 

quality of the fitted parameters, parameters were excluded from the analysis when the fitting was insignificant (p-173 

value<0.05), and when they were out of range (Fopt and α >peak value of the rainy season times 1.2). Additionally, 174 

outliers were filtered following the method by Papale et al. (2006) using 30-day moving windows with 1 day time steps.  175 

 176 

2.3.2 Vegetation indices 177 

We analysed the relationship between Fopt, α and some commonly applied vegetation indices: 178 

The maximum absorption in the red wavelengths generally occurs at 682 nm as this is the peak absorption for 179 

chlorophyll a and b (Thenkabail et al., 2000), which makes vegetation indices that include the red band sensitive to 180 

chlorophyll abundance. By far the most common vegetation index is the NDVI (Rouse et al., 1974):  181 

( )
( )redNIR

redNIR

ρρ

ρρ
NDVI

+
−=

          (2) 
182 

where ρNIR is the reflectance factor in the near infrared (NIR) band (band 2) and ρred is the reflectance factor in the red 183 

band (band 1). The NIR radiance is scattered by the air-water interfaces between the cells whereas red radiance is 184 

absorbed by chlorophyll and its accessory pigments (Gates et al., 1965). Normalization is done to reduce effects of 185 

atmospheric errors, solar zenith angles, and sensor viewing geometry, as well as increasing the vegetation signal (Qi et 186 

al., 1994; Inoue et al., 2008).  187 
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   A well-known issue with the NDVI is that it saturates at high biomass because the absorption of red light at ~670 nm 188 

peaks at higher biomass loads whereas NIR reflectance continues to increase due to multiple scattering effects 189 

(Mutanga and Skidmore, 2004; Jin and Eklundh, 2014). By reducing atmospheric and soil background influences, EVI 190 

increases the signal from the vegetation and maintain sensitivity in high biomass regions (Huete et al., 2002).  191 

( )
( )LρCρCρ

ρρ
GEVI

blue2red1NIR

redNIR

+−+
−

=         
(3) 

192 

where ρblue is the reflectance factor in the blue band (band 3). The coefficients C1=6 and C2=7.5 correct for atmospheric 193 

influences, while L=1 adjust for the canopy background. The factor G=2.5 is the gain factor. 194 

   Another attempt to overcome the issue of NDVI saturation was proposed by Roujean and Breon (1995), which 195 

combines the advantages of the DVI (NIR-red) and the NDVI for low and high vegetation cover, respectively:  196 

( )
( )redNIR

redNIR

ρρ

ρρ
RDVI

+
−

=           (4)
 

197 

As a non-linear index, RDVI is not only less sensitive to variations in the geometrical and optical properties of 198 

unknown foliage but also less affected by the solar and viewing geometry (Broge and Leblanc, 2001).  199 

   The NIR and SWIR bands are affected by the same ground properties, except that SWIR bands are also strongly 200 

sensitive to equivalent water thickness. Fensholt and Sandholt (2003) proposed a vegetation index, the shortwave 201 

infrared water stress index (SIWSI), using NIR and SWIR bands to estimate drought stress for vegetation in semi-arid 202 

environments:  203 

( )
( )12SWIRNIR

12SWIRNIR
12

ρρ

ρρ
SIWSI

+
−

=          (5) 204 

( )
( )16SWIRNIR

16SWIRNIR
16

ρρ

ρρ
SIWSI

+
−

=          (6) 205 

where ρswir12 is NBAR band 5 (1230-1250 nm) and ρswir16 is NBAR band 6 (1628-1652 nm). As the vegetation water 206 

content increases, the reflectance in the SWIR decreases indicating that low and high SIWSI values point to sufficient 207 

water conditions and drought stress, respectively. 208 

 209 

2.3.3 Incoming PAR across the Sahel 210 

Incoming PAR at the ground surface from ERA Interim followed the pattern of PAR measured at the six sites in situ 211 

closely, but it was systematically underestimated (Fig. 2). An ordinary least square linear regression was thereby fitted 212 

between ERA Interim PAR and PAR measured in situ (PARin situ=3.09* PARERA interim +23.07; coefficient of 213 

determination (R2)=0.93; n=37976). The regression line was used for converting ERA Interim PAR to the same level as 214 

in situ measured PAR.   215 

<Figure 2> 216 

 217 

2.4 Data analysis 218 

2.4.1 Coupling temporal and spatial dynamics in photosynthetic capacity and quantum efficiency with 219 

explanatory variables 220 
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In a first step, the coupling between intra-annual dynamics in Fopt and α and the vegetation indices for the different 221 

measurement sites were studied using Pearson correlation analysis. Relationships between intra-annual dynamics in Fopt 222 

and α and the vegetation indices for all sites combined were also analysed. In order to avoid influence of the spatial and 223 

inter-annual variability, time series of ratios of Fopt and α (Fopt_frac and αfrac) against the annual peak values (Fopt_peak and 224 

αpeak; see below for calculation of annual peak values) were estimated for all sites: 225 

opt_peak

opt
opt_frac F

F
F =           (7) 226 

peak
frac

α

α
α =            (8) 227 

The same standardisation procedure was used for all vegetation indices (VIfrac): 228 

peak
frac VI

VI
VI =            (9) 229 

where VIpeak is the annual peak values of the vegetation indices (14 days running mean with highest annual value). Such 230 

a standardisation gives fractions of how Fopt, α and VI varies over the season in relationship to the annual peak value, 231 

and it removes the spatial and inter-annual variation, and mainly intra-annual dynamics remains. The coupling between 232 

αfrac and Fopt_frac and the different VIfrac were examined using Pearson correlation analysis for all sites. The robustness of 233 

the correlation coefficients was estimated by using a bootstrap simulation with 200 iterations in the correlation analysis 234 

(Richter et al., 2012).  235 

   In order to investigate spatial and inter-annual variability in Fopt and α for the measurement sites, gaps needed to be 236 

filled. Regression trees were used to fill gaps in the daily estimates of Fopt and α. One hundred tree sizes were chosen 237 

based on 100 cross validation runs, and these trees were then used for estimating the Fopt and α (De'ath and Fabricius, 238 

2000). We used SWC, VPD, Tair, PAR, and the vegetation index with strongest correlation with intra-annual dynamics 239 

as explanatory variables in the analysis. In the analysis for all sites, the same standardisation procedure as done for Fopt, 240 

α, and the vegetation indices was done for the hydrological and meteorological variables. The 100 Fopt and α output 241 

subsets from the regression trees were averaged and used for filling the gaps in Fopt and α.  242 

   To investigate spatial and inter-annual variability in Fopt and α across the measurement sites of the Sahel, annual peak 243 

values of Fopt and α (Fopt_peak and αpeak; 14 days running mean with highest annual value) were correlated with the annual 244 

sum of P, yearly means of Tair, SWC, RH, VPD, Rg, annual peak values of biomass, soil nitrogen and C concentrations, 245 

C3/C4 ratio, and VIpeak using Pearson linear correlations. Again, we used a bootstrap simulation methodology with 200 246 

iterations in order to estimate the robustness of the correlations.  247 

 248 

2.4.2 The GPP model 249 

Based on Eq. 1 and the outcome of the statistical analysis previously described under subsection 2.4.1 (for results see 250 

subsect. 3.2), a model for estimating GPP across the Sahel was created: 251 

)e(1FGPP optF

PARα

opt













 ×−

−×−=           (10)
 

252 
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The model is applicable for each point in space and time. Firstly, Fopt_peak and αpeak were estimated spatially and inter-253 

annually using linear regression functions fitted against the vegetation indices with the strongest relationships to spatial 254 

and inter-annual variability in Fopt_peak and αpeak: 255 

FoptpeakFoptopt_peak mNDVIkF +×=          (11) 256 

αpeakαpeak mRDVIkα +×=          (12) 257 

where kFopt and kα are the slopes of the lines and mFopt and mα are the intercepts. Secondly, to estimate the Fopt_frac and 258 

αfrac for each day of the year, linear regression functions were established for Fopt_frac and α frac with the vegetation index 259 

with the strongest relationships to intra-annual variability of Fopt_frac and αfrac for all sites, as follows: 260 

FoptfracFoptopt_frac nRDVIlF +×=          (13) 261 

αfracαfrac nRDVIlα +×=           (14) 262 

where lFopt and lα are the slopes of the lines and nFopt and nα are the intercepts. Eq. 11-14 provide the relationships to 263 

estimate Fopt and α for any day of the year and for any point in space across the Sahel:  264 

( )( )FoptfracFoptFoptmaxFoptopt_fracopt_peakopt nRDVIlmNDVIkFFF +×+×=×=      (15) 265 

( )( )αfracααmaxαfracpeak nRDVIlmRDVIkααα +×+×=×=        (16) 266 

Eq. 15 and 16 can be put into Eq. 10 and GPP is thereafter estimated as:267 

( )
( )

)e(1FFGPP opt_fracopt_peak

fracpeak

FF

PARαα

opt_fracopt_peak















×
××−

−××−=         (17)  268 

generating a final model as: 269 

( )( )( )
( )( )

( )( )
)e(1

nRDVIlmNDVIkGPP

FoptfracFoptFoptmaxFopt

αfracααmaxα

nRDVIlmNDVIk

PARnRDVIlmNDVIk

FoptfracFoptFoptmaxFopt















+×+×
×+×+×−

−×

+×+×−=

      (18) 270 

 271 

2.4.3 Parameterisation and evaluation of modelled GPP and evaluation of the MODIS GPP product 272 

In order to estimate the robustness of the GPP model and its parameters, we used a bootstrap simulation methodology 273 

when fitting the empirical relationships. We used 200 iterations and different measurement sites were used in the 274 

different runs when fitting the empirical relationships (Richter et al., 2012). The runs generated 200 sets of slopes, 275 

intercepts, and R2, from which the medians and the standard deviations were estimated. Possible errors (e.g. random 276 

sampling errors, aerosols, electrical sensor noise, filtering and gap-filling errors, clouds, and satellite sensor 277 

degradation) can be present in both the predictor and the response variables. Hence, we selected reduced major axis 278 

linear regressions to account for errors in both predictor and response variables when fitting the regression functions. 279 

The regression models were validated against the left-out subsamples within the bootstrap simulation methodology by 280 

calculating the root-mean-square-error (RMSE), and by fitting an ordinary least squares linear regression between 281 

modelled and in situ variables. 282 

   Similarly, the MODIS GPP product (MOD17A2H, collection 6) was evaluated against in situ GPP by calculating 283 

RMSE, and by fitting an ordinary least squares linear regression. 284 

 285 
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3 Results 286 

3.1 Evaluation of the MODIS GPP product 287 

There was a strong linear relationship between the MODIS GPP product (MOD17A2H; collection 6) and the in situ 288 

GPP (slope 0.17; intercept 0.11 g C m-2 d-1; R2 0.69; n=598). However, MOD17A2H strongly underestimated in situ 289 

GPP (Fig. 3) resulting in high RMSE (2.69 g C m-2 d-1). 290 

<Figure 3> 291 

 292 

3.2 Intra-annual dynamics in photosynthetic capacity and quantum efficiency 293 

Intra-annual dynamics in Fopt and α differed in amplitude, but were otherwise similar across the measurement sites in 294 

the Sahel (Fig. 4). There is no green ground vegetation during the dry season, and the low photosynthetic activity is due 295 

to few evergreen trees. This results in low values for both Fopt and α during the dry season. The vegetation responded 296 

strongly to rainfall, and both Fopt and α increased during the early phase of the rainy season. Generally, Fopt peaked 297 

slightly earlier than α (average± 1 standard deviation: 7±10 days) (Fig. 4).  298 

<Figure 4>  299 

   All vegetation indices described intra-annual dynamics in Fopt well for all sites (Table 2). SIWSI12 had the highest 300 

correlation for all sites except Wankama Millet, where it was RDVI. When all sites were combined, all indices 301 

described seasonality in Fopt well, but RDVI had the strongest correlation (Table 2).  302 

      The intra-annual dynamics in α were also closely coupled to intra-annual dynamics in the vegetation indices for all 303 

sites (Table 2). For α, RDVI was the strongest index describing intra-annual dynamics, except for Wankama Fallow 304 

where it was EVI. When all sites were combined all indices described intra-annual dynamics in α well, but RDVI was 305 

still the index with the strongest relationship (Table 2).  306 

<Table 2>  307 

   The regression trees used for gap-filling explained the intra-annual dynamics in Fopt and α well for all sites (Table 3). 308 

The main explanatory variables coupled to intra-annual dynamics in Fopt for all sites across the Sahel were in the order 309 

of RDVI, SWC, VPD, Tair, and PAR; and for α they were RDVI, SWC, VPD and Tair. For all sites across Sahel, 310 

incorporating hydrological and meteorological variables increased the ability to determine intra-annual dynamics in Fopt 311 

and α compared to the ordinary least squares linear regressions against the RDVI (Table 2, data given as r; Table 3). 312 

The incorporation of these variables increased the R2 from 0.81 to 0.87 and from 0.74 to 0.84, for Fopt and α 313 

respectively.  314 

<Table 3>  315 

 316 

3.3 Spatial and inter-annual dynamics in photosynthetic capacity and quantum efficiency 317 

Large spatial and inter-annual variability in Fopt_peak and αpeak were found across the six measurement sites in the Sahel 318 

(Table 4). The average two week running mean peak values of Fopt and α for all sites were 26.4 µmol CO2 m
-2 s-1and 319 

0.040 µmol CO2 µmol PAR-1, respectively. However, the ranges were large; Fopt_peak ranged between 10.1 µmol CO2 m
-320 

2 s-1 (Wankama Millet 2005) and 50.0 µmol CO2 m
-2 s-1 (Dahra 2010), and αpeak ranged between 0.020 321 

µmol CO2 µmol PAR-1 (Demokeya 2007) and 0.064 µmol CO2 µmol PAR-1 (Dahra 2010) (Table 4). All vegetation 322 

indices determined spatial and inter-annual dynamics in Fopt_peak and αpeak well (Table 5). NDVIpeak was most closely 323 

coupled with Fopt_peak whereas RDVIpeak was closest coupled with αpeak (Fig. 5). Fopt_peak also correlated well with peak 324 
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dry weight biomass, C content in the soil, and RH, whereas αpeak also correlated well with peak dry weight biomass, and 325 

C content in the soil (Table 5).  326 

<Table 4> 327 

<Table 5> 328 

<Figure 5>  329 

 330 

3.4 Evaluation of the GPP model 331 

Modelled GPP was similar to in situ GPP on average, and there was a strong linear relationship between modelled GPP 332 

and in situ GPP for all sites (Fig. 6; Table 6).  However, when separating the evaluation between measurement sites, it 333 

can be seen that the model reproduced some sites better than others (Figure 7; Table 6). Wankama Millet is generally 334 

overestimated whereas the model works on average well for Demokeya but underestimates high values (Fig. 7; Table 335 

6). Variability of in situ GPP at the other sites is well reproduced by the model (Fig. 7; Table 6).  The final parameters 336 

of the GPP model (Eq. 18) are given in Table 7. 337 

<Figure 6> 338 

<Figure 7> 339 

< Table 6> 340 

< Table 7> 341 

 342 

4 Discussion 343 

Vegetation productivity of semi-arid savanna ecosystems is primarily driven by intra-annual rainfall distribution 344 

(Eamus et al., 2013; Brümmer et al., 2008; Moncrieff et al., 1997), and in the Sahel soil moisture conditions at the early 345 

rainy season are especially important (Rockström and de Rouw, 1997; Tagesson et al., 2016; Mbow et al., 2013). We 346 

thereby hypothesised that vegetation indices closely related to equivalent water thickness (SIWSI) would be strongly 347 

linked to intra-annual dynamics in Fopt and α. Our hypothesis was not rejected for Fopt, since this was also the case for 348 

all sites except for Wankama Millet (Table 2). The Wankama millet is a cropped agricultural site whereas all other sites 349 

are savanna ecosystems. However, our hypothesis was rejected for α, since it was more closely related to vegetation 350 

indices related to chlorophyll abundance (RDVI and EVI). Leaf area index increases over the growing season and it is 351 

closely related to the vegetation indices coupled with chlorophyll abundance (Tagesson et al., 2009). This increases the 352 

canopy level quantum efficiency (α) which explains the close relationship of α to RDVI. However, Fopt peaked earlier in 353 

the rainy season than α (Fig. 4).  Vegetation during this phase is vulnerable to drought conditions explaining the close 354 

relationship of Fopt to SIWSI. Fopt can only increase up to a certain level due to other constraining factors (nutrient, 355 

water and meteorological conditions) which could explain its closer relationship with SIWSI12 than with RDVI. 356 

   We hypothesised that remotely sensed vegetation indices closely related to chlorophyll abundance can be used for 357 

quantifying spatial and inter-annual dynamics in Fopt and α. Indeed, NDVI, EVI, and RDVI all had close correlations 358 

with the spatial and inter-annual dynamics in Fopt and α (Table 5). It was surprising that NDVIpeak had the strongest 359 

correlation with spatial and inter-annual variability for Fopt (Table 5). Both EVI and RDVI should be less sensitive to 360 

saturation effects than NDVI (Huete et al., 2002; Roujean and Breon, 1995), and based on this we assumed that peak 361 

values of these indices should have stronger relationships to peak values of Fopt and α. However, vegetation indices with 362 

a high sensitivity to changes in green biomass at high biomass loads, gets less sensitive to green biomass changes at low 363 
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biomass loads (Huete et al., 2002). Peak leaf area index for ecosystems across the Sahel is approximately 2, whereas the 364 

saturation issue of NDVI generally starts at an leaf area index of about 2-5 (Haboudane et al., 2004). Additionally, 365 

atmospheric scattering is much higher in the shorter wavelengths making EO-based vegetation indices including blue-366 

band information very sensitive to the atmospheric correction (Fensholt et al., 2006b), possibly explaining the lower 367 

correlation for EVI. 368 

   Our model substantially overestimates GPP for Wankama Millet (Fig. 7f). As a crop field, this site differs in particular 369 

from the other studied sites by its species composition, ecosystem structure, as well as land and vegetation management. 370 

Crop fields in southwestern Niger are generally characterized by a rather low productivity resulting from decreased 371 

fertility and soil loss caused by intensive land use (Cappelaere et al., 2009). These specifics of the Wankama Millet site 372 

may cause the model parameterised with observations from the other study sites to overestimate GPP at this site. The 373 

model parameterised using observation from the other measurement sites without this strong anthropogenic influence 374 

thus overestimates GPP. Similar results were found by Boulain et al. (2009) when applying an up-scaling model using 375 

leaf area index for Wankama Millet and Wankama Fallow. It worked well for Wankama fallow whereas it was less 376 

conclusive for Wankama Millet. The main explanation was low leaf area index in millet fields because of a low density 377 

of millet stands due to agricultural practice. There is extensive savanna clearing for food production in the Sahel 378 

(Leblanc et al., 2008; Boulain et al., 2009; Cappelaere et al., 2009). To further understand the impacts of this land cover 379 

change on vegetation productivity and land atmosphere exchange processes, it is of urgent need for more study sites 380 

covering cropped areas in this region. 381 

   In Demokeya, GPP is slightly underestimated for the year 2008 (Fig. 7c) because modelled Fopt (the thick black line in 382 

Fig. 5) is much lower than the actual measured value in 2008. An improvement of the model could be to incorporate 383 

some parameters that constrain or enhance Fopt depending on environmental stress. Indeed, the regression tree analysis 384 

indicated that incorporating climatic and hydrological variables increased the ability to predict both Fopt and α. On the 385 

other hand, for spatial upscaling purposes, it has been shown that including modelled climatic constraints on LUE 386 

decreases the ability to predict vegetation productivity due to the incorporated uncertainty in these modelled 387 

meteorological variables (Fensholt et al., 2006a; Ma et al., 2014). For spatial upscaling to regional scales it is therefore 388 

better to simply use relationships to EO data. This is particularly the case for the Sahel, one of the largest dryland areas 389 

in the world that is characterised by few sites of meteorological observations. 390 

   Although MOD17A2 GPP has previously been shown to capture GPP relatively well in several different ecosystems 391 

(Turner et al., 2006; Turner et al., 2005; Heinsch et al., 2006; Sims et al., 2006; Kanniah et al., 2009), it has been shown 392 

to be underestimated for others (Coops et al., 2007; Gebremichael and Barros, 2006; Sjöström et al., 2013). GPP of 393 

Sahelian drylands have not been well captured by MOD17A2 (Sjöström et al., 2013; Fensholt et al., 2006a), and as we 394 

have shown, this underestimation persists in the latest MOD17A2H GPP (collection 6) product. The main reason for 395 

this major underestimation is that maximum LUE is set to 0.84 g C MJ-1 (open shrubland; Demokeya) and 0.86 g C MJ-396 
1 (grassland; Agofou, Dahra, Kelma; Wankama Millet and Wankama Fallow) in the BPLUT, i.e. much lower than 397 

maximum LUE measured at the Sahelian measurement sites of this study (average: 2.47 g C MJ-1; range: 1.58-3.50 g C 398 

MJ-1) (Sjöström et al., 2013; Tagesson et al., 2015a), a global estimate of ~1.5 g C MJ-1 (Garbulsky et al., 2010), and a 399 

savanna site in Australia (1.26 g C MJ-1) (Kanniah et al., 2009).  400 

   Several state of the art dynamic global vegetation models have been used for decades to quantify GPP at different 401 

spatial and temporal scales (Dickinson, 1983; Sellers et al., 1997). These models are generally based on the 402 
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photosynthesis model by Farquhar et al. (1980), a model particularly sensitive to uncertainty in photosynthetic capacity 403 

(Zhang et al., 2014). This and several previous studies have shown that both photosynthetic capacity and efficiency 404 

(both α and LUE) can considerably vary seasonally and spatially, both within and between vegetation types (Eamus et 405 

al., 2013; Garbulsky et al., 2010; Ma et al., 2014; Tagesson et al., 2015a). This variability is difficult to estimate using 406 

broad values based on land cover classes, yet most models apply a constant value which can cause substantial 407 

inaccuracies in the estimates of seasonal and spatial variability in GPP. This is particularly a problem in savannas that 408 

comprises of several plant functional types (C3 and C4 species, and a large variability in tree/herbaceous vegetation 409 

fractions) (Scholes and Archer, 1997). This study indicates the strong applicability of EO as a tool for parameterising 410 

spatially explicit estimates of plant physiological variables, which could improve our ability to simulate GPP. Spatially 411 

explicit estimates of GPP at a high temporal and spatial resolution are essential for current global change studies and 412 

would be advantageous in the analysis of changes in GPP, its relationship to climatic change and anthropogenic forcing, 413 

and estimations of ecosystem processes and biochemical and hydrological cycles.   414 
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Tables  686 

Table 1. Description of the six measurement sites including location, soil type, ecosystem type and dominant species. 687 
Measurement site Coordinates Soil type Ecosystem Dominant species 

Agoufoua 

(ML-AgG, Mali) 
15.34°N, 
1.48°W 

Sandy ferruginous 
Arenosol 

Open woody 
savannah (4% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca, 

Combretum glutinosum 
Herbs: Zornia glochidiata, 
Cenchrus biflorus, Aristida 

mutabilis, Tragus berteronianus 
Dahrab 

(SN-Dah, Senegal) 
15.40°N, 
15.43°W 

Sandy luvic 
arenosol 

Grassland/shrubland 
Savanna (3% tree 

cover) 

Trees: Acacia spp., Balanites 
aegyptiaca 

Herbs: Zornia latifolia, Aristida 
adscensionis, Cenchrus biflorus 

Demokeyac 

(SD-Dem, Sudan) 
13.28°N, 
30.48°E 

Cambic Arenosol Sparse acacia 
savannah (7% tree 

cover) 

Trees: Acacia spp.,  
Herbs: Aristida pallida, 

Eragrostis tremula, Cenchrus 
biflorus 

Kelmaa 

(ML-Kem, Mali) 
15.22°N, 
1.57°W 

Clay soil depression Open acacia forest 
(90% tree cover) 

Trees: Acacia seyal, Acacia 
nilotica, Balanites aegyptiaca 
Herbs: Sporobolus hevolvus, 

Echinochloa colona, 
Aeschinomene sensitive 

Wankama Fallowd 

(NE-WaF, Niger) 
13.65°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Fallow bush Guiera senegalensis 

Wankama Millete 

(NE-WaM, Niger) 
13.64°N, 
2.63°E 

Sandy ferruginous 
Arenosol 

Millet crop Pennisetum glaucum 

a(Timouk et al., 2009) 688 
b(Tagesson et al., 2015b) 689 
c(Sjöström et al., 2009) 690 
d(Velluet et al., 2014) 691 
e(Boulain et al., 2009)692 
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Table 3. Statistics for the regression tree analysis studying relationships between intra-annual dynamics in the the 

photosynthetic capacity (Fopt) and quantum efficiency (α) and the explanatory variables for the six measurement sites 

(Fig. 1). The pruning level is the number of splits of the regression tree and an indication of complexity of the system. 

Measurement site 
Explanatory 
variables:     

Pruning 
level 

R2 

Fopt 1 2 3 4 5 
  

ML-AgG SIWSI12 Tair PAR SWC  16 0.98 

SN-Dah SIWSI12 SWC VPD Tair PAR 84 0.98 

SD-Dem SIWSI12 VPD SWC Tair PAR 33 0.97 

ML-Kem SIWSI12 PAR Tair VPD  22 0.98 

NE-WaF SIWSI12 SWC VPD Tair  14 0.92 

NE-WaM RDVI SWC VPD Tair  18 0.75 

All sites  RDVI SWC Tair VPD  16 0.87 

α 
       

ML-AgG RDVI  
   

3 0.95 

SN-Dah RDVI VPD SWC Tair PAR 21 0.93 

SD-Dem RDVI SWC PAR Tair  16 0.93 

ML-Kem RDVI Tair    4 0.75 

NE-WaF EVI SWC VPD   10 0.90 

NE-WaM RDVI SWC VPD Tair  15 0.86 

All sites RDVI SWC VPD Tair  16 0.84 
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Table 4. Annual peak values of quantum efficiency (αpeak; µmol CO2 µmol PAR-1) and photosynthetic capacity 

(Fopt_peak; µmol CO2 m
-2 s-1) for the six measurement sites (Fig. 1). The peak values are the 2 week running mean with 

highest annual value.  

Measurement site Year αpeak Fopt_peak 

ML-AgG 2007 0.0396 24.5 
SN-Dah 2010 0.0638 50.0 

2011 0.0507 42.3 
2012 0.0480 39.2 
2013 0.0549 40.0 

SD-Dem 2007 0.0257 16.5 
2008 0.0327 21.0 
2009 0.0368 16.5 

ML-Kem 2007 0.0526 33.5 
NE-WaF 2005 0.0273 18.2 

2006 0.0413 21.0 
NE-WaM 2005 0.0252 10.6 
  2006 0.0200 10.1 

Average   0.0399 26.4 
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Table 5. Correlation matrix between annual peak values of photosynthetic capacity (Fopt_peak) and quantum efficiency 

(αpeak) and measured environmental variables. P is annual rainfall; Tair is yearly averaged air temperature at 2 m height; 

SWC is yearly averaged soil water content (% volumetric water content) measured at 0.1 m depth; Rh is yearly 

averaged relative humidity; VPD is yearly averaged vapour pressure deficit; Rg is yearly averaged incoming global 

radiation; N and C cont. are soil nitrogen and carbon contents; NDVIpeak is annual peak normalized difference 

vegetation index (NDVI); EVIpeak is annual peak enhanced vegetation index (EVI); RDVI peak is annual peak 

renormalized difference vegetation index (RDVI); SIWSI12peak is annual peak short wave infrared water stress index 

based on MODIS NBAR band 2 and band 5; and SIWSI16peak is annual peak short wave infrared water stress index 

based on MODIS NBAR band 2 and band 6. Sample size was 13 for all except the marked explanatory variables. 

 Explanatory variable Fopt_peak αpeak 

Meteorological data    
P (mm) 0.24±0.26 0.13±0.27 
Tair (°C) -0.07±0.25 -0.01±0.25 

SWC (%)a 0.33±0.25 0.16±0.27 

Rh (%) 0.73±0.16* 0.60±0.19 

VPD (hPa) 0.20±0.26 0.15±0.30 

Rg (W m-2) -0.48±0.21 -0.41±0.24 

Biomass and edaphic 
data 

  

Biomass (g DW m-2)a 0.77±0.15* 0.74±0.14* 
C3/C4 ratio -0.05±0.26 0.06±0.30 
N cont. (%)b 0.22±0.11 0.35±0.14 
C cont. (%)b 0.89±0.06**  0.87±0.07**  
Earth observation data   
NDVI peak 0.94±0.05**  0.87±0.07** 
EVIpeak 0.93±0.04**  0.87±0.07**  
RDVIpeak 0.93±0.04**  0.89±0.07**  
SIWSI12peak 0.85±0.08**  0.84±0.08**  
SIWSI16peak 0.67±0.12* 0.65±0.15* 

Photosynthetic 
variables 

  

Fopt - 0.94±0.03**  
asample size equals 11. 
bsample size equals 9. 
* significant at 0.05 level. 
** significant at 0.01 level 
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Table 7. The parameters for Eq. 18 that was used in the final gross primary productivity (GPP) model. RMSE is the root 

mean square error, and R2 is the coefficient of determination of the linear regression models predicting the different 

variables. 

Parameter Value RMSE R2 

kFopt  79.6±6.3 
5.1±1.3 0.89±0.05 

mFopt -7.3±3.2 

lFopt  1.81±0.07 
0.33±0.04 0.79±0.04 

nFopt -0.85±0.07 

kα  0.16±0.02 
0.0069±0.0021 0.81±0.10 

m α 
-0.014±0.007 

l  α 1.20±0.05 
0.38±0.04 0.71±0.04 

n α -0.98±0.06 
 

 5 
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Figures 

 

 

Figure 1. Land use cover classes for the Sahel and the location of the six measurement sites included in the study. The land 5 

cover classes are based on multi-sensor satellite observations (Mayaux et al., 2003). The sites are Agoufou (ML-AgG), 

Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-Kem), Wankama Fallow (NE-WaF), and Wankama Millet (NE-WaM). 

The thick black line is the borders of the Sahel based on the isohytes 150 and 700 mm of annual precipitation (Prince et al., 

1995) 
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Figure 2. Photosynthetically active radiation (PAR) measured in situ against gridded ERA Interim ground surface PAR 

extracted for the six measurement sites (Figure 1) across the Sahel from European Centre for Medium-Range Weather 

Forecasts, ECMWF (2016). The grey line is the ordinary least square linear regression.  

 5 
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Figure 3. Evaluation of the MODIS based GPP product MOD17A2H collection 6 against eddy covariance based GPP from 

the six measurement sites (Figure 1) across the Sahel. The thick black line shows the one-to-one ratio, and the thin grey 

dotted line is the fitted ordinary least square linear regression.  

 5 
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Figure 4. Dynamics in photosynthetic capacity (Fopt) and quantum efficiency (QE, α) for the six measurement sites. Included 

is also dynamics in the vegetation indices with highest correlation to the intra-annual dynamics in Fopt (VIFopt) and to 

quantum efficiency (VIQE) (Table 2). The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) 

Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 5 
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Figure 5. Scatter plots of annual peak values for the six measurement sites (Figure 1) of a) photosynthetic capacity (Fopt_peak) 

and b) quantum efficiency (QEpeak; αpeak) against peak values of normalized difference vegetation index (NDVIpeak) and 5 

renormalized difference vegetation index (RDVIpeak), respectively. The annual peak values were estimated by taking the 

annual maximum of a two week running mean.  
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Figure 6. Evaluation of the modelled gross primary productivity (GPP) (Eq. 18) against in situ GPP from all six 

measurement sites across the Sahel. The thick grey line shows the one-to-one ratio, whereas the dotted thin grey line is the 

fitted ordinary least square linear regression.  
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Figure 7. Evaluation of the modelled gross primary productivity (GPP) (Eq. 18) against in situ GPP for the six sites across 

Sahel (Figure 1). The thick black line shows the one-to-one ratio, whereas the dotted thin grey line is the fitted ordinary least 

square linear regression. The sites are a) Agoufou (ML-AgG), b) Dahra (SN-Dah), c) Demokeya (SD-Dem), d) Kelma (ML-

Kem), e) Wankama Fallow (NE-WaF), and f) Wankama Millet (NE-WaM). 5 
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