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Abstract. It has been shown that vegetation growth in seidit@gions is an important sink for human induéessil
fuel emissions of C@ which indicates the strong need for improved ust@@ding, and spatially explicit estimates of
CO, uptake (gross primary productivity (GPP)) in semétaecosystems. This study has three aims: 1) &uate the
MOD17A2H GPP (collection 6) product against eddyar@ance (EC) based GPP for six sites across thelS2) To
find evidence on the relationships between spatial temporal variability in EC based photosynthetipacity (k)
and quantum efficiencyf and earth observation (EO) based vegetation@sd} To study the applicability of EO up-
scaled Ey anda for GPP modelling purposes. MOD17A2H GPP (coltatts) underestimated GPP strongly, most
likely because the maximum light use efficiencgés$ too low for semi-arid ecosystems in the MODIggathm. The
intra-annual dynamics inyf; was closely related to the shortwave infrared wstieess index (SIWSI) closely coupled
to equivalent water thickness, whereawas closely related to the renormalized differenegetation index (RDVI)
affected by chlorophyll abundance. Spatial andriatenual dynamics in & and a were closely coupled to the
normalized difference vegetation index (NDVI) anB\R, respectively. Modelled GPP based aj; Bndo up-scaled
using EO based indices reproduced in situ GPP faehll but a cropped site. The cropped site wesnsfly impacted
by intensive anthropogenic land use. This studycatés the strong applicability of EO as a tool parameterising
spatially explicit estimates of photosynthetic agpyjeand efficiency; incorporating this into dynanglobal vegetation
models could improve global estimations of vegetatproductivity, ecosystem processes and biochéngind

hydrological cycles.
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1 Introduction

Vegetation growth in semi-arid regions is an imanttsink for human induced fossil fuel emissioramBarid regions
are even the main biome driving long-term trendd arier-annual variability in carbon dioxide (@Quptake by
terrestrial ecosystems (Ahlstrom et al., 2015; Routt al., 2014). It is thus important to underdtahe long-term
variability of vegetation growth in semi-arid aresd their response to environmental conditiorisetiter quantify and
forecast the effects of climate change.

The Sahel is a semi-arid transition zone betwberdry Sahara desert in the North and the humihfan savanna
in the south. The region has experienced numemers droughts during the last decades that resinteegion-wide
famines in 1972-1973 and 1984-1985 and localized fhortages across the region in 1990, 2002, 220#] and
2012 (Abdi et al., 2014; United Nations, 2013). ¥tgion productivity is thereby an important ecosys service for
the people living in the Sahel, but it is underhigressure. The region experiences a strong pagulgrowth,
increasing the demand on the ecosystem servicedodgeopland expansion, increased pasture stockates and
fuelwood extraction (Abdi et al., 2014). Continuauepping is practised to meet the demand of tbavigig population
and has resulted in reduced soil fertility, whi¢feets vegetation productivity negatively (Samakéle 2005; Chianu
et al., 2006).

At the same time as we have reports of declimegetation productivity, we have contradictinga®p of greening of
the Sahel based on remote sensing data (Dardel 2084; Fensholt et al., 2013). The greeninchef$ahel has mainly
been attributed to alleviated drought stress carditdue to increased precipitation since the ndigies (Hickler et al.,
2005). Climate is thus another important factorufeting vegetation productivity and semi-arid regipsuch as the
Sabhel, are particularly vulnerable to climate flattons due to their vulnerability to moisture citioghs.

Estimation of gross primary productivity (GPRJE. uptake of atmospheric GOy vegetation, is still a major
challenge within remote sensing of ecosystem sesviGPP is a main driver of ecosystem services aaatlimate
regulation, carbon (C) sequestration, C storaged fproduction, or livestock grassland productionithil earth
observation (EO), spatial quantification of GPPegafly involves light use efficiency (LUE), defined the efficiency
to convert absorbed solar light into €@ptake (Monteith, 1972, 1977). It has been shdwah LUE varies in space and
time due to factors such as plant functional tyjyeught and temperature, nutrient levels and plggical limitations
of photosynthesis (Garbulsky et al., 2010; Paretlal., 2004; Kergoat et al., 2008). The LUE condeys been applied
using various methods, either by using a biomeifipetUE constant (Ruimy et al., 1994), or by maodify a
maximum LUE using meteorological variables (Runreét@l., 2004).

An example of an LUE based model is the standaRP product from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor (MOD17A2). Withihe model, absorbed photosynthetically active tamhia
(PAR) is estimated as a product of the fractiorPAR absorbed by the green vegetation (FPAR from NI®X%?)
multiplied with daily PAR from the meteorologicaaté of the Global Modeling and Assimilation Offi@MAQ). A
set of maximum LUE parameters specified for eadmiei are extracted from a Biome Properties Look-dbl&

(BPLUT). Then maximum LUE is modified dependingantemperature (J;) and vapor pressure deficit (VPD) levels
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(Running et al., 2004). Sjostrom et al. (2013) ead the MOD17A2 product (collection 5.1) for &fj and showed
that it was underestimating GPP for semi-arid sasarnn the Sahel. Explanations for this underestimavere that the
assigned maximum LUE from the BPLUT is set too lwd uncertainties in the FPAR (MOD15A2) productcétly,
a new collection of MOD17A2 at 500 m spatial resiolu was released (MOD17A2H; collection 6) with epdated
BPLUT, updated GMAO meteorological data, improvgahlity control and gap filling of the FPAR dataorin
MOD15A2 (Running and Zhao, 2015).

It has been shown that the LUE method does edbpn well in arid conditions and at agricultusities (Turner et
al., 2005). Additionally, the linearity assumed the LUE model is usually not found as the respans&PP to
incoming light follows more of an asymptotic cur(@annell and Thornley, 1998). Investigating othestmods for
remotely determining GPP is thus of great impomarespecially for semi-arid environments. Therefanstead of
LUE we focus on the light response function of GRRhe canopy scale, and spatial and temporaltia@riaf its two
main parameters: maximum GPP under light saturgiiamopy-scale photosynthetic capacity,)F and the initial
slope of the light response function (canopy-scgiantum efficiencyp) (Falge et al., 2001; Tagesson et al., 2015a).
Photosynthetic capacity is a measure of the maximate at which the canopy can fix €@uring photosynthesis
(umol CO, m? s*) whereas: is the amount of C&fixed per incoming PARymol CO, pmol PAR?Y). Just to clarify the
difference in LUE andt in this study; LUE gmol CO, umol APARY) is the slope of a linear fit between Captake
and absorbed PAR, whereas(umol CO; umol PARY) is the initial slope of an asymptotic curve agaimcoming
PAR.

It has been proven thagFanda are closely related to chlorophyll abundance duiaeir coupling with the electron
transport rate (Ide et al., 2010). Additionally,semi-arid ecosystems water availability is gemgrednsidered to be
the main limiting factor affecting intra-annual @mics of vegetation growth (Fensholt et al., 204&kler et al.,
2005; Tagesson et al., 2015b). Several remote repssidies have established relationships betwemotely sensed
vegetation indices and ecosystem properties suchlasophyll abundance and equivalent water thiskn@ oder and
Pettigrew-Crosby, 1995; Fensholt and Sandholt, 20@3this study we will analyse if EO vegetatiamices can be
used for up-scalingds anda and investigate if this could offer a promisingyta map GPP in semi-arid areas. This
potential will be analysed by the use of detailedugd observations from six different measuremétets S(eddy
covariance flux towers) across the Sahel.

The three aims of this study are:

1) To evaluate the recently released MOD17A2H GPHgctibn 6) product and to investigate if it is leetht
capturing GPP levels for the Sahel than colleciidn We hypothesise that MOD17A2H GPP (collectipn 6
product will estimate GPP well for the six Sahellaeasurement sites, because of the major chaogesinl
comparison to collection 5.1 (Running and Zhad,5)0

2) Tofind evidence on the relationships between apatid temporal variability inds anda and remotely
sensed vegetation indices. We hypothesise thattedyreensed vegetation indices that are closeftadIto
chlorophyll abundance can be used for quantifyjpagial and inter-annual dynamics ig,fando. Vegetation
indices closely related to equivalent water thickare closely linked to intra-annual dynamicsgpahda
across the Sahel.

3) To evaluate the applicability of a GPP model basethe light response function using remotely seénse
vegetation indices and incoming PAR as input data.
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2 Materials and Methods

2.1 Site description

The Sahel stretches from the Atlantic Ocean inwiiest to the Red Sea in the east. The northern béoterds the
Sahara and the southern border towards the hunddrisan Savanna are defined by the 150 and 700 wihytiss,
respectively (Fig. 1) (Prince et al., 1995). Tred ahrub canopy cover is now generally low (< 5#gJ dominated by
species oBalanites, Acacia, Boscia and Combretaceae (Rietkerk et al., 1996). Annual grasses suclScwenefeldia
gracilis, Dactyloctenium aegypticum, Aristida mutabilis, and Cenchrus biflorus dominate the herbaceous layer, but
perennial grasses suchAmropogon gayanus, Cymbopogon schoenanthus can also be found (Rietkerk et al., 1996; de
Ridder et al., 1982). From the FLUXNET databasedBechi et al., 2001), we selected the six avadahbasurement
sites with eddy covariance based {Dx data from the Sahel (Table 1; Fig. 1). Thesirepresent a variety of the
ecosystems present in the region, from dry fallavghb savanna to seasonally inundated acacia fdfesta full
description of the measurement sites, we refefagésson et al., 2016) and the references in Tlable

<Table 1>

<Figure 1>

2.2 Data collection

2.2.1 Eddy covariance, hydrological and meteorologal in situ data

Eddy covariance (EC), hydrological and meteorolagdata originating from the years between 2005 2013 were
collected from the principal investigators of theasurement sites (Tagesson et al., 2016). The Bbisset-up
consisted of open-path GIBI,0 infrared gas analysers and 3-axis sonic anemosn@ata were collected at 20 Hz rate
and statistics were calculated for 30-min peridets. a full description of sensor set up and postessing of the EC
data, see references in Table 1. Final fluxes Viikeeed according quality flags provided by FLUXNEand outliers
were filtered according Papale et al. (2006). Weaexed the original net ecosystem exchange (NEBE dithout any
gap-filling or partitioning of NEE to GPP and ecse®m respiration. We also collected hydrological areteorological
data: air temperature §F °C), rainfall (P; mm), relative air humidity (RBf), soil moisture at 0.1 m depth (SWC; %
volumetric water content), incoming global radiatigR; W m®), incoming photosynthetically active radiation (A
pumol m? s%), VPD (hPa), peak dry weight biomass (g dry weigif), C3/C4 species ratio, and soil conditions
(nitrogen and C concentration; %). For a full dggtn of the collected data and sensor set-up,Tsgesson et al.
(2016).

2.2.2 Earth Observation data and gridded ancillarydata

Remotely sensed composite products from the MODIBAT L4 from the Sahel were collected at Reverb &CH
(NASA, 2016). The collected products were GPP (M®@B2H; collection 6) and the Nadir Bidirectional flRetance
Distribution Function (BRDF) adjusted reflectan®BAR) (8-day composites; MCD43A4; collection 5.1)590*500
m? spatial resolution, and the normalized differemegetation index (NDVI), and the enhanced vegetatidex (EVI)
(16-day composites; MOD13Q1; collection 6) at 25884t spatial resolution. The NBAR product was preferoedr
the reflectance product (MODO09A1), in order to aveariability caused by varying sun and sensor irigvgeometry
(Huber et al., 2014; Tagesson et al., 2015c). Weaeted the median of the 3x3 pixels centred atdbation of the EC
towers. The time series of the remotely sensed yatsdwere filtered according the MODIS quality cohtdata;
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MOD17A2H is a gap-filled and filtered product, Q@td from MCD43A2 were used for the filtering of MEZBA4;
and bit 2-5 (highest —decreasing quality) was UsedOD13Q1. Finally, data were gap-filled to dailglues using
linear interpolation.

For a GPP model to be applicable on a largetiadpscale, a gridded data set of incoming PAR eeded. We
downloaded ERA Interim reanalysis PAR at the grosmdace (W rif) with a spatial resolution of 0.25°x0.25°
accumulated for each 3-hour period 2000-2015 frbm European Centre for Medium-Range Weather Faecas
(ECMWF) (Dee et al., 2011; ECMWF, 2016).

2.3 Data handling
2.3.1 Intra-annual dynamics in photosynthetic capaty and quantum efficiency
Both linear and hyperbolic equations have been fmeitivestigating the response of GPP to incontigigt (Wall and
Kanemasu, 1990; Campbell et al., 2001). Howevey tho not represent the lower part of the lighpoesse function
particularly well, and we thereby instead chooses® the asymptotic Mitscherlich light-responsecfiom (Inoue et al.,
2008; Falge et al., 2001). The Mitscherlich ligagponse function was fitted between daytime NEE iandming
PAR:

=
NEE=-(Fp)x(1-e ™ /)+R, &)

where 5y is the CQ uptake at light saturation (photosynthetic capagimol CO; m?2sY), Ry is dark respiration
(umol CO, m? sY), anda is the initial slope of the light response curgegntum efficiencypmol CO, umol PARY)
(Falge et al., 2001). By subtracting fRom Eq. 1, the function is forced through zerd &PP is thereby estimated. We
fitted Eq. 1 using 7-day moving windows with 1 dage steps and generating daily values gf &da. To assure high
quality of the fitted parameters, parameters werdueled from the analysis when the fitting was gndicant (p-
value<0.05), and when they were out of rangg; @da >peak value of the rainy season times 1.2). Aoltily,
outliers were filtered following the method by Plpet al. (2006) using 30-day moving windows wittdy time steps.

2.3.2 Vegetation indices
We analysed the relationship betwegp, i and some commonly applied vegetation indices:
The maximum absorption in the red wavelengths gdlyeoccurs at 682 nm as this is the peak absarphio
chlorophyll a and b (Thenkabail et al., 2000), whinakes vegetation indices that include the red ls=amsitive to
chlorophyll abundance. By far the most common eyt index is the NDVI (Rouse et al., 1974):

_ (pNIR_pred)
NOVI= PNIR+pred) @
wherepyr is the reflectance factor in the near infraredRNband (band 2) angleq is the reflectance factor in the red
band (band 1). The NIR radiance is scattered byathevater interfaces between the cells whereasradénce is
absorbed by chlorophyll and its accessory pigmé@ttes et al., 1965). Normalization is done to cedaffects of
atmospheric errors, solar zenith angles, and sesisaing geometry, as well as increasing the vegetasignal (Qi et
al., 1994; Inoue et al., 2008).
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188 A well-known issue with the NDVI is that it sa#tes at high biomass because the absorption digtetdat ~670 nm
189 peaks at higher biomass loads whereas NIR refleetamontinues to increase due to multiple scattegffgcts
190 (Mutanga and Skidmore, 2004; Jin and Eklundh, 20B¢)reducing atmospheric and soil background arikes, EVI
191 increases the signal from the vegetation and maistnsitivity in high biomass regions (Huete et 2002).
192 EVI =G (PNlR _pred)

(Pair + CPred=CoPoiuet L) ©)
193  wherepye is the reflectance factor in the blue band (band Be coefficients &=6 and G=7.5 correct for atmospheric

194 influences, while L=1 adjust for the canopy backgr. The factor G=2.5 is the gain factor.
195 Another attempt to overcome the issue of NDMusion was proposed by Roujean and Breon (198B)ch
196 combines the advantages of the DVI (NIR-red) ardNBVI for low and high vegetation cover, respeeiyv
197 ROV = ur~Pe). @)

PNIRY Pred
198 As a non-linear index, RDVI is not only less semsitto variations in the geometrical and opticabgmrties of
199 unknown foliage but also less affected by the safat viewing geometry (Broge and Leblanc, 2001).
200 The NIR and SWIR bands are affected by the sgroand properties, except that SWIR bands are stismgly
201 sensitive to equivalent water thickness. Fenshott Sandholt (2003) proposed a vegetation index,sti@mtwave
202 infrared water stress index (SIWSI), using NIR &WIR bands to estimate drought stress for vegetaticemi-arid
203  environments:

204 SIWS, = (pNIR _Psvlelz) )
PNIR FPswiRr:2

205  SIWSk = (P ~Povrss) ©)
NIR t Pswiris

206  wherepgyiiz IS NBAR band 5 (1230-1250 nm) apglie is NBAR band 6 (1628-1652 nm). As the vegetatiaten
207  content increases, the reflectance in the SWIRedsers indicating that low and high SIWSI valuesiptn sufficient
208  water conditions and drought stress, respectively.

209

210 2.3.3 Incoming PAR across the Sahel

211  Incoming PAR at the ground surface from ERA Intefatiowed the pattern of PAR measured at the dixssin situ
212  closely, but it was systematically underestimatéid.(2). An ordinary least square linear regressias thereby fitted
213  between ERA Interim PAR and PAR measured in SitARPR su=3.09* PARra interim +23.07; coefficient of
214  determination (B=0.93; n=37976). The regression line was useddarerting ERA Interim PAR to the same level as
215  in situ measured PAR.

216  <Figure 2>

217

218 2.4 Data analysis

219 2.4.1 Coupling temporal and spatial dynamics in phosynthetic capacity and quantum efficiency with

220  explanatory variables
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In a first step, the coupling between intra-anrayalamics in B, anda and the vegetation indices for the different
measurement sites were studied using Pearsonatioreiinalysis. Relationships between intra-andyaamics in By
anda and the vegetation indices for all sites combiwede also analysed. In order to avoid influencéhefspatial and
inter-annual variability, time series of ratiosFf;anda (Fop rac@Nd oirac) @gainst the annual peak valueg,{Feaand

Opeak S€€ below for calculation of annual peak valwess)e estimated for all sites:

Fo
— pt
Fopt_frac - E (7)
opt_peak
o
Ofrac = (8)
0‘peak

The same standardisation procedure was used feegsitation indices (Vko):

\

\4 peak

\4 frac = (9)

where V|4 is the annual peak values of the vegetation irsdftéd days running mean with highest annual valtegh

a standardisation gives fractions of hoyy,Fe. and VI varies over the season in relationshiphtannual peak value,
and it removes the spatial and inter-annual vaniatand mainly intra-annual dynamics remains. Tdwgpting between
asrac aNd Ryt rac@nd the different L. were examined using Pearson correlation analgsialf sites. The robustness of
the correlation coefficients was estimated by usirgpotstrap simulation with 200 iterations in toerelation analysis
(Richter et al., 2012).

In order to investigate spatial and inter-annaalability in R, anda for the measurement sites, gaps needed to be
filled. Regression trees were used to fill gapshia daily estimates of f anda. One hundred tree sizes were chosen
based on 100 cross validation runs, and these wegs then used for estimating thgFanda (De'ath and Fabricius,
2000). We used SWC, VPD4T PAR, and the vegetation index with strongest datien with intra-annual dynamics
as explanatory variables in the analysis. In tredyeis for all sites, the same standardisation gutace as done for,f,

a, and the vegetation indices was done for the Hgdival and meteorological variables. The 1Qf; Bnd a output
subsets from the regression trees were averagedsaaidfor filling the gaps in f anda.

To investigate spatial and inter-annual varigbih Foy anda across the measurement sites of the Sahel, apea&l
values of B anda (Fopt_peak@Ndopeas 14 days running mean with highest annual valueeveorrelated with the annual
sum of P, yearly means of;] SWC, RH, VPD, R annual peak values of biomass, soil nitrogen@mdncentrations,
C3/C4 ratio, and Vkacusing Pearson linear correlations. Again, we usedotstrap simulation methodology with 200

iterations in order to estimate the robustness®tbrrelations.

2.4.2 The GPP model
Based on Eq. 1 and the outcome of the statistitalyais previously described under subsection A#rresults see

subsect. 3.2), a model for estimating GPP acresS#hel was created:

[—uXPARJ
GPP=-F, x(1-e ™ /)

opt (10
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The model is applicable for each point in space témé. Firstly, B peak@ndapeac Were estimated spatially and inter-
annually using linear regression functions fittggiast the vegetation indices with the strongdstiomships to spatial
and inter-annual variability ingf_peak@Ndopear

Fopt_peak: kFopt>< NDVIpeak+ mFopt (11)

apeak: ka x RDVIpeak+ m, (12)

where ko and k are the slopes of the lines ang.gnand m are the intercepts. Secondly, to estimate theqk and
asrac fOr each day of the year, linear regression famstiwere established foggEracanda sac With the vegetation index
with the strongest relationships to intra-annuaialality of Fyp racandagacfor all sites, as follows:

Fopt_frac= |Foptx RDVlfrac+ nFopt (13)

Ofrac = Iax RDVIfrac+ n(x (14)

where ko and |, are the slopes of the lines angg nand ry are the intercepts. Eq. 11-14 provide the relatiqrs to
estimate F, anda for any day of the year and for any point in spacess the Sahel:

Fopt = Fopt_pea?( Fopt_frac= (kFop% NDVImax+ mFopL)(I Foptx RDVIfrac+ nFopL) (15)

o= (’*peak)< Ofrac = (kax RDVI max+ ma)(lux RDVI frac+ na) (16)

Eq. 15 and 16 can be put into Eq. 10 and GPP is redfter estimated as:

~{tpentyac }PAR
Fopt_peaiFopt_frac )

GPP= _(Fopt_pealz ':opt_frag>< (1- e[

17)
generating a final model as:
GPP= _((k Fopl>< NDVI max+ mFopt)(I Foptx RDVI frac+ nFopl))
[ (ko *NDVI g #m, )(1, XRDVI o0+, JXPAR ] (18)
x (1—6 (kFaplxNDVI max+chpl)(IFothRDVIWac+nFop() )

2.4.3 Parameterisation and evaluation of modelled P and evaluation of the MODIS GPP product
In order to estimate the robustness of the GPP hadkits parameters, we used a bootstrap simualatiethodology
when fitting the empirical relationships. We use@D Jterations and different measurement sites wsed in the
different runs when fitting the empirical relatidryzs (Richter et al., 2012). The runs generated 288 of slopes,
intercepts, and & from which the medians and the standard devistivere estimated. Possible errors (e.g. random
sampling errors, aerosols, electrical sensor noféering and gap-filling errors, clouds, and dktie sensor
degradation) can be present in both the prediaidrthe response variables. Hence, we selected edduajor axis
linear regressions to account for errors in bo#dpmtor and response variables when fitting theeggon functions.
The regression models were validated against fv@le subsamples within the bootstrap simulatiogthndology by
calculating the root-mean-square-error (RMSE), agdfitting an ordinary least squares linear regmsdetween
modelled and in situ variables.

Similarly, the MODIS GPP product (MOD17A2H, cdtion 6) was evaluated against in situ GPP byutatiog

RMSE, and by fitting an ordinary least squaresdimegression.
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3 Results

3.1 Evaluation of the MODIS GPP product

There was a strong linear relationship betweenM@DIS GPP product (MOD17A2H; collection 6) and timesitu
GPP (slope 0.17; intercept 0.11 g C di%; R? 0.69; n=598). However, MOD17A2H strongly undemstied in situ
GPP (Fig. 3) resulting in high RMSE (2.69 g C o).

<Figure 3>

3.2 Intra-annual dynamics in photosynthetic capacit and quantum efficiency
Intra-annual dynamics inyf; anda differed in amplitude, but were otherwise simidgoross the measurement sites in
the Sahel (Fig. 4). There is no green ground véigetauring the dry season, and the low photosyittteetivity is due
to few evergreen trees. This results in low valisesboth F,; anda during the dry season. The vegetation responded
strongly to rainfall, and bothyf; anda increased during the early phase of the rainycseaSenerally, F;peaked
slightly earlier tharu (averagez 1 standard deviation: 7+10 days) (Fig. 4
<Figure 4>

All vegetation indices described intra-annuahaiyics in B, well for all sites (Table 2). SIWglhad the highest
correlation for all sites except Wankama Millet, emb it was RDVI. When all sites were combined, intlices
described seasonality injrwell, but RDVI had the strongest correlation (TeaB).

The intra-annual dynamics irnwere also closely coupled to intra-annual dynarnmidfie vegetation indices for all
sites (Table 2). Foa, RDVI was the strongest index describing intratmirdynamics, except for Wankama Fallow
where it was EVI. When all sites were combinedralices described intra-annual dynamicsiiwell, but RDVI was
still the index with the strongest relationship lflea2).
<Table 2>

The regression trees used for gap-filling expdithe intra-annual dynamics ig,f/anda well for all sites (Table 3).
The main explanatory variables coupled to intrasahlynamics in f; for all sites across the Sahel were in the order
of RDVI, SWC, VPD, T;, and PAR; and fon they were RDVI, SWC, VPD and,[ For all sites across Sahel,
incorporating hydrological and meteorological vhlés increased the ability to determine intra-ahdyaamics in By
ando compared to the ordinary least squares lineaessiggns against the RDVI (Table 2, data givem; a&able 3).
The incorporation of these variables increased RAgrom 0.81 to 0.87 and from 0.74 to 0.84, fog, land o
respectively.
<Table 3>

3.3 Spatial and inter-annual dynamics in photosyntatic capacity and quantum efficiency

Large spatial and inter-annual variability igy,fpeak@ndopeac Were found across the six measurement sites iSahel
(Table 4). The average two week running mean pedikes of Eando for all sites were 26.4mol CGO, m? s'and
0.040pmol CO, pmol PAR?, respectively. However, the ranges were largg; axranged between 10imol CO, m'
2st (Wankama Millet 2005) and 50.Qumol CO, m?s* (Dahra 2010), andogex ranged between 0.020
pmol CO, pmol PAR? (Demokeya 2007) and 0.064mol CO, pmol PAR' (Dahra 2010) (Table 4). All vegetation
indices determined spatial and inter-annual dynanmicRy; peac@nd opeax Well (Table 5). NDV)e, was most closely
coupled with By peakWhereas RDVjeoWas closest coupled witheax (Fig. 5). Bp peaxalso correlated well with peak
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dry weight biomass, C content in the soil, and RHgreas,.acalso correlated well with peak dry weight biomasg]
C content in the soil (Table 5).

<Table 4>

<Table 5>

<Figure 5>

3.4 Evaluation of the GPP model

Modelled GPP was similar to in situ GPP on average,there was a strong linear relationship betweedelled GPP
and in situGPP for all sites (Fig. 6; Table 6). However, wiseparating the evaluation between measuremest gite
can be seen that the model reproduced some sities tiean others (Figure 7; Table 6). Wankama Milegenerally
overestimated whereas the model works on averafjavédemokeya but underestimates high values.(FigTable
6). Variability of in situ GPP at the other siteswell reproduced by the model (Fig. 7; Table Bhe final parameters
of the GPP model (Eq. 18) are given in Table 7.

<Figure 6>

<Figure 7>

< Table 6>

< Table 7>

4 Discussion

Vegetation productivity of semi-arid savanna ectmys is primarily driven by intra-annual rainfalistlibution
(Eamus et al., 2013; Brimmer et al., 2008; Monteefl., 1997), and in the Sahel soil moistureditions at the early
rainy season are especially important (Rockstrochdm Rouw, 1997; Tagesson et al., 2016; Mbow eR813) We
thereby hypothesised that vegetation indices gfosshted to equivalent water thickness (SIWSI) lddoe strongly
linked to intra-annual dynamics indranda. Our hypothesis was not rejected fgp,Fsince this was also the case for
all sites except for Wankama Millet (Table 2). TWankama millet is a cropped agricultural site wherell other sites
are savanna ecosystems. However, our hypothesisejeged fora, since it was more closely related to vegetation
indices related to chlorophyll abundance (RDVI &\d). Leaf area index increases over the growirgsea and it is
closely related to the vegetation indices couplét whlorophyll abundance (Tagesson et al., 200Bj)s increases the
canopy level quantum efficiency)(which explains the close relationshipoofo RDVI. However, E,peaked earlier in
the rainy season than(Fig. 4). Vegetation during this phase is vuligao drought conditions explaining the close
relationship of By to SIWSI. Ky can only increase up to a certain level due t@rtonstraining factors (nutrient,
water and meteorological conditions) which coulglein its closer relationship with SIWgthan with RDVI.

We hypothesised that remotely sensed vegetaiitines closely related to chlorophyll abundance ba used for
quantifying spatial and inter-annual dynamics i Bnda. Indeed, NDVI, EVI, and RDVI all had close cortidas
with the spatial and inter-annual dynamics i Bnda (Table 5). It was surprising that ND)} had the strongest
correlation with spatial and inter-annual variailior F,,(Table 5). Both EVI and RDVI should be less sewsitio
saturation effects than NDVI (Huete et al., 200Bufean and Breon, 1995), and based on this we &sktimat peak
values of these indices should have stronger ogighips to peak values of,Fando. However, vegetation indices with
a high sensitivity to changes in green biomassgit biomass loads, gets less sensitive to greendse changes at low
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364  biomass loads (Huete et al., 2002). Peak leafiadex for ecosystems across the Sahel is approaiyn2t whereas the
365  saturation issue of NDVI generally starts at arf lv@a index of about 2-5 (Haboudane et al., 208dyitionally,
366  atmospheric scattering is much higher in the shavieelengths making EO-based vegetation indicelsiding blue-
367 band information very sensitive to the atmosphedmrection (Fensholt et al., 2006b), possibly eixytey the lower
368  correlation for EVI.

369 Our model substantially overestimates GPP fonkdena Millet (Fig. 7f). As a crop field, this sidéfers in particular
370 from the other studied sites by its species contiposiecosystem structure, as well as land andtaéiga management.
371  Crop fields in southwestern Niger are generallyrabgrized by a rather low productivity resultimgrh decreased
372  fertility and soil losscaused by intensive land uggappelaere et al., 2009Jhese specifics of the Wankama Millet site
373  may cause the model parameterised with observafions the other study sites to overestimate GPiatsite. The
374  model parameterised using observation from theratreasurement sites without this strong anthropiegefiluence
375  thus overestimates GPP. Similar results were fdynBoulain et al. (2009) when applying an up-saalnodel using
376 leaf area index for Wankama Millet and Wankamadwalllt worked well for Wankama fallow whereas it sviess
377  conclusive for Wankama Millet. The main explanatioas low leaf area index in millet fields becaua tow density
378  of millet stands due to agricultural practice. Thés extensive savanna clearing for food productiothe Sahel
379  (Leblanc et al., 2008; Boulain et al., 2009; Cappg¢ et al., 2009). To further understand the itgpaicthis land cover
380 change on vegetation productivity and land atmospleschange processes, it is of urgent need foe ratrdy sites
381  covering cropped areas in this region.

382 In Demokeya, GPP is slightly underestimatedlfferyear 2008 (Fig. 7c) because modellgg(Ehe thick black line in
383  Fig. 5) is much lower than the actual measuredev&iu2008. An improvement of the model could béntmrporate
384  some parameters that constrain or enhaggel€pending on environmental stress. Indeed, thessmn tree analysis
385 indicated that incorporating climatic and hydrolmgivariables increased the ability to predict bgh ando. On the
386  other hand, for spatial upscaling purposes, it besn shown that including modelled climatic constsaon LUE
387 decreases the ability to predict vegetation praditgt due to the incorporated uncertainty in thesedelled
388 meteorological variables (Fensholt et al., 2006a;é¥lal., 2014). For spatial upscaling to regiaalles it is therefore
389  better to simply use relationships to EO data. Thizarticularly the case for the Sahel, one ofléingest dryland areas
390 inthe world that is characterised by few sitesneteorological observations.

391 Although MOD17A2 GPP has previously been shoavonapture GPP relatively well in several differenbsystems
392  (Turner et al., 2006; Turner et al., 2005; Heinsthl., 2006; Sims et al., 2006; Kanniah et alg®Qit has been shown
393 to be underestimated for others (Coops et al., 2@&bremichael and Barros, 2006; Sjostrom et 832 GPP of
394  Sahelian drylands have not been well captured bYDMIA2 (Sjodstrom et al., 2013; Fensholt et al., 200@nd as we
395 have shown, this underestimation persists in ttestaMOD17A2H GPP (collection 6) product. The mesason for
396 this major underestimation is that maximum LUEdsts 0.84 g C M3 (open shrubland; Demokeya) and 0.86 g C MJ
397 ! (grassland; Agofou, Dahra, Kelma; Wankama Millati aVankama Fallow) in the BPLUT, i.e. much lowearth
398 maximum LUE measured at the Sahelian measurentestdfithis study (average: 2.47 g C'Wdange: 1.58-3.50 g C
399  MJ?Y (Sjostrom et al., 2013; Tagesson et al., 201&a@)pbal estimate of ~1.5 g C MJGarbulsky et al., 2010), and a
400 savanna site in Australia (1.26 g C M{Kanniah et al., 2009).

401 Several state of the art dynamic global vegetathodels have been used for decades to quantiBy @Rlifferent
402  spatial and temporal scales (Dickinson, 1983; 8ellet al., 1997). These models are generally basedhe
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photosynthesis model by Farquhar et al. (1980)pdahparticularly sensitive to uncertainty in pheymthetic capacity
(Zhang et al., 2014). This and several previoudistuhave shown that both photosynthetic capacity efficiency
(botha and LUE) can considerably vary seasonally andiapatboth within and between vegetation typesr(ida et
al., 2013; Garbulsky et al., 2010; Ma et al., 20ldgesson et al., 20158)his variability is difficult to estimate using
broad values based on land cover classes, yet models apply a constant value which can cause auiest
inaccuracies in the estimates of seasonal andaspatiability in GPP. This is particularly a prebh in savannas that
comprises of several plant functional types (C3 @ddspecies, and a large variability in tree/hegbas vegetation
fractions) (Scholes and Archer, 1997his study indicates the strong applicability of B®a tool for parameterising
spatially explicit estimates of plant physiologicalriables, which could improve our ability to siletie GPP. Spatially
explicit estimates of GPP at a high temporal aratigpresolution are essential for current globd@rge studies and
would be advantageous in the analysis of chang&®m, its relationship to climatic change and agbgenic forcing,
and estimations of ecosystem processes and biochkand hydrological cycles.
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686 Tables

687  Table 1.Description of the six measurement sites includdgtion, soil type, ecosystem type and dominaetigs.

Measurement site Coordinates  Soil type Ecosystem Dominant species
Agoufol 15.34°N, Sandy ferruginous Open woody Trees:Acacia spp., Balanites
(ML-AgG, Mali) 1.48°W Arenosol savannah (4% tree aegyptiaca,
cover) Combretum glutinosum
Herbs: Zornia glochidiata,
Cenchrus biflorus, Aristida
mutabilis, Tragus berteronianus
Dahrd 15.40°N, Sandy luvic Grassland/shrubland Trees:Acacia spp., Balanites
(SN-Dah, Senegal) 15.43°W arenosol Savanna (3% tree aegyptiaca
cover) Herbs:Zornia latifolia, Aristida
adscensionis, Cenchrus biflorus
Demokeya 13.28°N,  Cambic Arenosol Sparse acacia Trees: Acacia spp.,
(SD-Dem, Sudan) 30.48°E savannah (7% tree Herbs:Aristida pallida,
cover) Eragrostis tremula, Cenchrus
biflorus
Kelmé& 15.22°N, Clay soil depression Open acacia forest Trees:Acacia seyal, Acacia
(ML-Kem, Mali) 1.57°W (90% tree cover) nilotica, Balanites aegyptiaca
Herbs:Sporobolus hevolvus,
Echinochloa colona,
Aeschinomene sensitive
Wankama Fallof 13.65°N,  Sandy ferruginous Fallow bush Guiera senegalensis
(NE-WaF, Niger) 2.63°E Arenosol
Wankama Millet 13.64°N, Sandy ferruginous Millet crop Pennisetum glaucum
(NE-WaM, Niger) 2.63°E Arenosol

688  ¥(Timouk et al., 2009)
689 °(Tagesson et al., 2015b)
690  °(Sjostrom et al., 2009)
691  “Velluet et al., 2014)

692 ®(Boulain et al., 2009)
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Table 3. Statistics for the regression tree analysis shglyelationships between intra-annual dynamicshin the
photosynthetic capacity ) and quantum efficiencyy] and the explanatory variables for the six measerd sites

(Fig. 1). The pruning level is the number of sptifghe regression tree and an indication of comiplef the system.

Explanatory Pruning

Measurement site \ . R?
variables: level
Fopt 1 2 3 4 5
ML-AgG SIWSI;, Tair PAR SWC 16 0.98
SN-Dah SIWS|, SWC VPD Tair PAR 84 0.98
SD-Dem SIWS), VPD SWC Tair PAR 33 0.97
ML-Kem SIWS» PAR Tair VPD 22 0.98
NE-WaF SIWS/, SWC VPD Tair 14 0.92
NE-WaM RDVI SWC VPD Tair 18 0.75
All sites RDVI SWC Tair VPD 16 0.87
o
ML-AgG RDVI 3 0.95
SN-Dah RDVI VPD SWC Tair PAR 21 0.93
SD-Dem RDVI SWC PAR Tair 16 0.93
ML-Kem RDVI Tair 4 0.75
NE-WaF EVI SWC VPD 10 0.90
NE-WaM RDVI SWC VPD Tair 15 0.86
All sites RDVI SWC VPD Tair 16 0.84
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Table 4. Annual peak values of quantum efficiency,bs pmol CG; pmol PARY and photosynthetic capacity
(Fopt_peak umol CO, m?2 s%) for the six measurement sites (Fig. 1). The pedies are the 2 week running mean with

highest annual value.

Measurement site Yearogeal Fopt pea
ML-AgG 2007 0.0396 245
SN-Dah 2010 0.0638 50.0

2011  0.0507 42.3
2012 0.0480 39.2
2013 0.0549 40.0
SD-Dem 2007 0.0257 16.5
2008 0.0327 21.0
2009 0.0368 16.5

ML-Kem 2007 0.0526 335
NE-WaF 2005 0.0273 18.2
2006 0.0413 21.0
NE-WaM 2005 0.0252 10.6
2006  0.0200 10.1
Average 0.0399 26.4
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Table 5. Correlation matrix between annual peak values aitgsynthetic capacity (f pea) and quantum efficiency
(apea) @and measured environmental variables. P is amairghll; T is yearly averaged air temperature at 2 m height;
SWC is yearly averaged soil water content (% voluimevater content) measured at 0.1 m depth; Riesrly
averaged relative humidity; VPD is yearly averagegour pressure deficit;;Rs yearly averaged incoming global
radiation; N and C cont. are soil nitrogen and oarlzontents; NDVjL. is annual peak normalized difference
vegetation index (NDVI); EVka is annual peak enhanced vegetation index (EVI);VRR« is annual peak
renormalized difference vegetation index (RDVI)\WSlzpeads annual peak short wave infrared water stresexind
based on MODIS NBAR band 2 and band 5; and Sh¥slis annual peak short wave infrared water stresexind
based on MODIS NBAR band 2 and band 6. Sampleveizel 3 for all except the marked explanatory véemb

Explanatory variable &5t _peak Opeak
Meteorological data

P (mm) 0.24+0.26  0.13+0.27
Tar (°C) -0.07+0.25 -0.01+0.25
SWC (%} 0.33+0.25  0.16+0.27
Rh (%) 0.73:0.16  0.60+0.19
VPD (hPa) 0.20£0.26  0.15+0.30
Ry (W mi®) -0.48+0.21 -0.41+0.24
Biomass and edaphic

data

Biomass (g DW >  0.77+0.15 0.74%0.14
C3/C4 ratio -0.05+0.26 0.06+0.30
N cont. (%Y 0.22#0.11  0.35#0.14
C cont. (%) 0.89+0.06 0.87+0.07
Earth observation data

NDVI peak 0.94+0.05 0.87+0.07*
EVlpeax 0.93+0.04 0.87+0.07
RDVl peax 0.93+0.04 0.89+0.07
SIWShapeak 0.85+0.08 0.84+0.08
SIWShsgpeak 0.67+0.12 0.65+0.15
Photosynthetic

variables

Fopt - 0.94+0.03

%sample size equals 11.
sample size equals 9.

* significant at 0.05 level.
** significant at 0.01 level
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Table 7. The parameters for Eq. 18 that was used in thé grass primary productivity (GPP) model. RMSE he troot

mean square error, and® B the coefficient of determination of the line@gression models predicting the different

variables.

Parameter Value RMSE B

kFopw 79.61+6.3

Meopi -7.3+3.2 5.1+1.3 0.89+0.05
I Fopt 1.81+0.07 0.3340.04 0.7950.04
nFopv -0.85+£0.07 ) - . V.

Ky 0.16+0.02 00066200021 0.6150.10
m, -0.014+0.007 =V .81+0.

lo 1.20+0.05 0.3840.04 0712004
Ng -0.98+0.06 OO (120,

25



Biogeosciences Discuss., doi:10.5194/bg-2016-414, 2016 . .
Manuscript under review for journal Biogeosciences BlogeOSC|e nces
Published: 29 September 2016 Discussions
(© Author(s) 2016. CC-BY 3.0 License.

Figures

20° N+
10° N+
0°

Land cover
Il Closed evergreen lowland forest [T Closed grassland I |rrigated croplands
I Mangrove 1 Open grassland with sparse shrubs [ Sandy desert and dunes
["1Mosaic Forest/Croplands ["10Open grassland ] Stony desert
[ Mosaic Forest/Savanna [_1Sparse grassland [ Bare rock
Il Deciduous woodland ["1 Swamp bushland and grassland [18alt hardpans
I Deciduous shrubland with sparse trees [ Croplands (>50 %) Il Waterbodies
[ Open deciduous shrubland [T Croplands with open woody vegetation [l Cities

5 Figure 1. Land use cover classes for the Sahel and théidocaf the six measurement sites included in theys The land
cover classes are based on multi-sensor satebigereations (Mayaux et al., 2003). The sites areufau (ML-AgG),
Dahra (SN-Dah), Demokeya (SD-Dem), Kelma (ML-KelWWgankama Fallow (NE-WaF), and Wankama Millet (NE-WaM
The thick black line is the borders of the Saheldobon the isohytes 150 and 700 mm of annual pratgm (Prince et al.,
1995)
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Figure 2. Photosynthetically active radiation (PAR) meaduire situ against gridded ERA Interim ground suefdeAR

extracted for the six measurement sites (Figur@ctpss the Sahel from European Centre for MediumgRaNeather

Forecasts, ECMWF (2016). The grey line is the adireast square linear regression.
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Figure 3. Evaluation of the MODIS based GPP product MOD17A2#ection 6 against eddy covariance based GPP from
the six measurement sites (Figure 1) across thelS&he thick black line shows the one-to-one tasind the thin grey

dotted line is the fitted ordinary least squaredinregression.
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Figure 4. Dynamics in photosynthetic capacity,d-and quantum efficiency (Q) for the six measurement sites. Included

is also dynamics in the vegetation indices withhkig correlation to the intra-annual dynamics iptFQ/Ig) and to

quantum efficiency (Mg) (Table 2). The sites are a) Agoufou (ML-AgG),ghra (SN-Dah), c) Demokeya (SD-Dem), d)
5 Kelma (ML-Kem), e) Wankama Fallow (NE-WaF), and¥ankama Millet (NE-WaM).
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Figure 5. Scatter plots of annual peak values for the sixsmesanent sites (Figure 1) of a) photosynthetic cip@Fop; pea)
and b) quantum efficiency (@& opeay against peak values of normalized difference tagm index (NDVje,) and

renormalized difference vegetation index (RR\), respectively. The annual peak values were egtinby taking the
annual maximum of a two week running mean.
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Figure 6. Evaluation of the modelled gross primary produtyifGPP) (Eg. 18) against in situ GPP from all six
measurement sites across the Sahel. The thickligeeghows the one-to-one ratio, whereas the ddttedgrey line is the
fitted ordinary least square linear regression.
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Figure 7. Evaluation of the modelled gross primary produtyiviGPP) (Eq. 18) against in situ GPP for the #igssacross

Sahel (Figure 1). The thick black line shows the-tmone ratio, whereas the dotted thin grey linthé fitted ordinary least

square linear regression. The sites are a) AgoiitiAgG), b) Dahra (SN-Dah), c) Demokeya (SD-Deih) Kelma (ML-
5 Kem), e) Wankama Fallow (NE-WaF), and f) Wankamdeé?{NE-WaM).
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